Step of Proof: before_last
11,40
postcript
pdf
Inference at
*
2
I
of proof for Lemma
before
last
:
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
x
:
T
. (
x
v
)
(
(
x
= last(
v
)))
x
before last(
v
)
v
x
:
T
. (
x
[
u
/
v
])
(
(
x
= last([
u
/
v
])))
x
before last([
u
/
v
])
[
u
/
v
]
latex
by
InteriorProof
((((((((((Unfold `l_before` 0)
CollapseTHEN (RWO "cons_sublist_cons" 0))
)
CollapseTHEN (RWO "
CollapseTHENM (RWO "cons_member" 0))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
CollapseTHEN ((Aut
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN ((Aut)
CollapseTHEN (Reduce 0))
)
CollapseTHEN (SimpConcl))
latex
C
1
:
C1:
6.
x
:
T
C1:
7. (
x
=
u
)
(
x
v
)
C1:
8.
(
x
= last([
u
/
v
]))
C1:
(
x
=
u
& [last([
u
/
v
])]
v
)
[
x
; last([
u
/
v
])]
v
C
.
Definitions
x
before
y
l
,
x
.
t
(
x
)
,
P
Q
,
P
Q
,
P
&
Q
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
t
T
,
True
,
if
b
then
t
else
f
fi
,
ff
,
null(
as
)
,
b
,
A
,
P
Q
,
{
T
}
,
x
(
s
)
Lemmas
cons
sublist
cons
,
cons
member
,
implies
functionality
wrt
iff
,
all
functionality
wrt
iff
,
sublist
wf
,
last
wf
,
not
wf
,
l
member
wf
,
false
wf
origin